

Materialspezifikation RQ 200

SPEC_M_78 Rev. 1 Seite 1 von 3

1. Allgemein:

RQ 200 ist ein elektrisch geschmolzenes, transparentes Quarzglas. Diese Materialspezifikation beschreibt die chemischen und physikalischen Eigenschaften von RQ 200, hergestellt von der Raesch Quarz (Germany) GmbH.

2. Chemische Eigenschaften:

2.1 Chemische Zusammensetzung:

RQ 200 hat eine Reinheit von mindestens 99.99 % SiO₂.

Es enthält folgende Verunreinigungen in ppm:

Elemente	Al	Ca	Cr	Cu	Fe	K	Li	Mg	Mn	Na	Ni	Ti
typisch	15	0.6	0.01	0.02	0.2	0.5	0.7	< 0.1	< 0.1	0.8	< 0.01	1.3
maximal	18	1	0.04	0.05	0.6	1.3	1.1	0.2	0.2	1.5	0.04	1.9

2.2 OH-Gehalt:

RQ 200 in unbehandeltem Zustand, direkt nach dem Rohrzug, weist einen OH-Gehalt von etwa 120 ppm auf. Durch Vakuumglühen kann der OH-Gehalt, abhängig von der Wandstärke und der Glühdauer, auf weniger als 1 ppm reduziert werden.

2.3 Chemische Beständigkeit:

Quarzglas zeigt eine außergewöhnlich hohe Inertheit gegenüber chemischen Reagenzien. Es wird in die Klasse 1 für Wasser-, Laugen- und Säurebeständigkeit eingestuft. Diese chemische Beständigkeit bleibt auch bei hohen Konzentrationen und Temperaturen erhalten. Ausnahmen bilden Flusssäure und konzentrierte Phosphorsäure.

2.4 Gasdurchlässigkeit:

Bei Raumtemperatur (25°C) ist Quarzglas praktisch nicht gasdurchlässig. Abhängig von den jeweiligen Diffusionskoeffizienten wird Helium ab ca. 180°C merklich durchlässig, Wasserstoff ab ca. 300°C, leichte Gase ab 600°C und Neon, Stickstoff, Sauerstoff, sowie Luft ab ca. 1000°C.

3. Physikalische Eigenschaften:

3.1 Mechanische Eigenschaften:

Dichte	[g/cm³]	2.203
Poisson-Zahl	[1]	0.17
Härte	[Mohs]	5.5 - 6.5
Druckfestigkeit	[N/mm²]	1150
Zugfestigkeit	[N/mm²]	50
Biegefestigkeit	[N/mm²]	68
Elastizitätsmodul bei 20 °C	[N/mm²]	75000

^{*}Die mechanischen Eigenschaften sind stark von Form, Oberflächenbeschaffenheit und inneren Spannungen abhängig. In der Tabelle sind typische Werte aufgeführt.

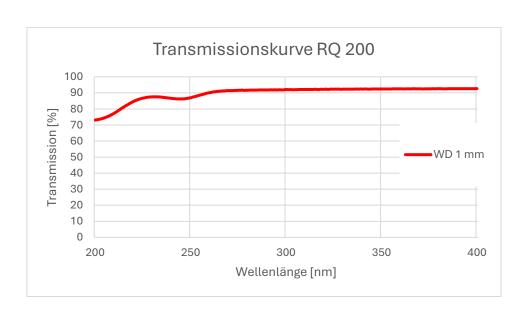
3.2 Thermische Eigenschaften:

untere Entspannungstemperatur	[dPas]	10 ^{14.7}	[°C]	1167
obere Entspannungstemperatur	[dPas]	10 ^{13.2}	[°C]	1255
Erweichungstemperatur	[dPas]	10 ^{7.6}	[°C]	1760
Verarbeitungsbereich	[dPas]	10 ⁴	[°C]	1700 - 2100

Materialspezifikation RQ 200

SPEC_M_78 Rev. 1 Seite 2 von 3

Transformationstemperatur	[°C]	ca. 1200
Verdampfungspunkt	[°C]	ca. 2230
Kontinuierliche Anwendungstemperatur	[°C]	bis 1160
Kurzzeitige Anwendungstemperatur	[°C]	bis 1300
Entglasungsbereich	[°C]	1000 - 1700
Linearer Wärmeausdehnungskoeffizient (bei 20 - 320°C)	[1/K]	0.54 x 10 ⁻⁶
Wärmeleitfähigkeit (bei 20°C)	[1/Wm*K]	1.4
Spezifische Wärme (bei 50°C)	[J/kg*K]	775


3.3 Elektrische Eigenschaften:

Spezifischer elektrischer Widerstand	[°C]	20	$[\Omega^* m]$	1 x 10 ¹⁸
	[°C]	400	$[\Omega^*m]$	1 x 10 ¹⁰
	[°C]	800	[Ω*m]	6.3×10^{6}
	[°C]	1200	[Ω*m]	1.3 × 10⁵
			······································	
Durchschlagfestigkeit	[°C]	20	[kV/mm]	25 40
Durchschlagfestigkeit	[°C]	20 500	[kV/mm]	25 40 4 5
Durchschlagfestigkeit				
Durchschlagfestigkeit $\label{eq:Durchschlagfestigkeit} Dielektrizitätskonstante \ \epsilon \ (bei 20°C, 1 \ MHz)$	[°C]			

3.4 Optische Eigenschaften:

	[4]	4 450
Optische Brechzahl (bei λ = 587.6 nm)	11	1.459

Einzuhaltende Transmissionswerte bei 1 [mm] Wanddicke:						
Wellenlänge λ [nm]	200	250	254	360	400	
Transmission T [%]	> 65	> 85	> 87	> 90	> 91	

Materialspezifikation RQ 200

SPEC_M_78 Rev. 1 Seite 3 von 3

Firmenadresse:

Raesch Quarz (Germany) GmbH In den Folgen 3 D-98693 Ilmenau

Telefon: 0049-3677-4696-0 / Fax 0049-3677-4696-3690

E-Mail: info@raesch.net Internet: www.raesch.net

Mitgeltende Dokumente:

Produktspezifikationen

Änderungshistorie						
Rev.	Datum	Beschreibung der Änderung				
0	01.04.2019	Neues Dokument				
1	17.04.2024	Neues Logo & Layout				